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Turbulent flow over idealized water waves with varying wave slope ak and wave age
c/u∗ is investigated using direct numerical simulations at a bulk Reynolds number
Re = 8000. In the present idealization, the shape of the water wave and the associated
orbital velocities are prescribed and do not evolve dynamically under the action of
the wind. The results show that the imposed waves significantly influence the mean
flow, vertical momentum fluxes, velocity variances, pressure, and form stress (drag).
Compared to a stationary wave, slow (fast) moving waves increase (decrease) the
form stress. At small c/u∗, waves act similarly to increasing surface roughness zo
resulting in mean vertical velocity profiles with shorter buffer and longer logarithmic
regions. With increasing wave age, zo decreases so that the wavy lower surface is
nearly as smooth as a flat lower boundary. Vertical profiles of turbulence statistics
show that the wave effects depend on wave age and wave slope but are confined
to a region kz < 1 (where k is the wavenumber of the surface undulation and z is
the vertical coordinate). The turbulent momentum flux can be altered by as much as
40% by the waves. A region of closed streamlines (or cat’s-eye pattern) centred about
the critical layer height was found to be dynamically important at low to moderate
values of c/u∗. The wave-correlated velocity and flux fields are strongly dependent
on the variation of the critical layer height and to a lesser extent the surface orbital
velocities. Above the critical layer zcr the positions of the maximum and minimum
wave-correlated vertical velocity ww occur upwind and downwind of the peak in zcr ,
like a stationary surface. The wave-correlated flux uwww is positive (negative) above
(below) the critical layer height.

1. Introduction
The interaction between atmospheric turbulence and water waves is of consider-

able importance in geophysical flows. Wind-generated waves influence the flux of
momentum and scalars at the air–sea interface and represent a visible signature of
coupling between the atmosphere and ocean. Also, the fundamental difference be-
tween atmospheric boundary layers over land and water derives from the scale and
mobility of the water surface. Despite extensive past work, the present understanding
of the physical mechanisms at work in turbulent air flow over waves remains unclear,
partly because of the formidable difficulties of obtaining and interpreting field obser-
vations over the open ocean (e.g. Edson & Fairall 1998 and Hristov, Friehe & Miller
1998). From the perspective of the atmospheric boundary layer, questions persist as
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to the influence of ocean waves on the height of the wave-induced boundary layer,
the partitioning of the vertical momentum flux between turbulent and wave-induced
components, the modification of Monin–Obukhov similarity theory, the role wave age
plays in the determination of surface drag, and the parameterization of wave effects
for large-scale numerical models.

The uncertainty about fundamental aspects of wind–wave interaction is illustrated
by the wide scatter (more than a factor of 2) in the variation of wave growth with
wave age deduced from field observations (e.g. see Gent & Taylor 1976, figure 11).
The current generation of numerical models based on Reynolds-averaged equations
and eddy viscosity prescriptions (e.g. Gent & Taylor 1976; Gent 1977; Harris &
Street 1994; Harris, Belcher & Street 1996; Mastenbroek et al. 1996; Li 1995) also
predict wide variations in important parameters like wave growth depending on the
type of turbulence closure scheme adopted (Belcher & Hunt 1998 provide a recent
review). As noted by Harris et al. (1996) there is compelling evidence to suggest that
there are multiple physical parameters, like surface roughness (Gent & Taylor 1976),
influencing wave growth. The commonly accepted view in geophysical flows over
land surfaces assumes that the surface roughness is sufficiently large that the fluid
dynamics is independent of Reynolds number. However, Kitaigorodskii & Donelan
(1984) and Harris et al. (1996) point out that the Reynolds number is likely to be
important since oceanic conditions are often either transitional or even smooth rather
than fully rough, thus further adding to the complexity of wind–wave interaction.

The goal of the present work is to develop and use three-dimensional, time-
dependent direct numerical simulations to examine turbulent air flow over water
waves thus eliminating dependence on turbulence closure assumptions. Numerical
simulations of turbulent flows have become an important tool for studying the basic
physics of turbulent flows (for reviews see Rogallo & Moin 1984 and Moin & Mahesh
1998), but are not commonly applied to flows with complex boundaries. Access to
time-dependent, three-dimensional datasets allows the spatial and temporal evolution
of turbulent flow fields to be examined in detail that is not routinely available to the
experimentalist. Because of the complexity of the wind–wave problem, in this paper
we only consider the direct numerical simulation (DNS) of turbulent flow, admittedly
at low Reynolds number, over idealized water waves. The specific objective is to
identify wave effects on the turbulent flow above a moving wavy surface as a function
of wave age.

There have been a few studies using DNS as well as large-eddy simulation (LES)
to examine turbulent flows over complex geometry, like wavy surfaces. Henn & Sykes
(1999), Cherukat et al. (1998), De Angelis, Lombardi & Banerjee (1997), and Maass
& Schumann (1994) consider turbulent flow over sinusoidal surfaces driven by a
pressure gradient, i.e. channel flow. Gong, Taylor & Dornbrack (1996) use LES to
simulate turbulent flow developing over sinusoidal waves in a wind tunnel, and Choi,
Moin & Kim (1992) employ DNS to study turbulent flow over streamwise oriented
riblets. Also, Krettenauer & Schumann (1992) consider turbulent convection over
wavy terrain utilizing DNS. It is important to mention that in all of these studies, the
wavy boundary is stationary and thus not applicable to flow over water waves. Caponi
et al. (1982) consider moving wavy surfaces of finite amplitude but the calculations
assume two-dimensional laminar viscous flow.

For the present study, we examine the effects of a moving wavy surface on plane
turbulent Couette flow, rather than pressure-driven channel flow. This choice is
motivated by the fact that the mean total vertical flux (or stress) in Couette flow
is constant with height independent of the flow state (i.e. laminar, transitional or
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Figure 1. Sketch of three-dimensional Couette flow driven by velocity Uo over a moving wavy
boundary of wavelength λ (or wavenumber k = 2π/λ), phase speed c, and amplitude a in a domain
of size (Lx, Ly, h) = (6, 5, 1)λ. For clarity, the surface grid is shown with less resolution than actually
used in the computations.

turbulent). Secondly, Komminaho, Lundbladh & Johansson (1996) point out that
the limiting near-wall values in Couette flow are closer to those of higher Reynolds
number flow in channels and boundary layers. Turbulent Couette flow differs from
pressure-driven channel flow because the total stress (or flux) is constant vertically, the
mean flow pressure gradient is identically zero, the mean horizontal velocity profile
is monotonic, there is finite turbulence production at all z, and large-scale coherent
structures have been found in the central region of the channel (e.g. Lee & Kim 1991).
There are relatively few experimental investigations of plane turbulent Couette flow
because of practical difficulties associated with establishing the flow in the laboratory.
A discussion of numerical simulations and experimental studies of plane turbulent
Couette flow over flat boundaries is provided by Papavassiliou & Hanratty (1997),
Komminaho et al. (1996), Bech et al. (1995), and Aydin & Leutheusser (1991).

2. Problem formulation
2.1. Flow configuration

The problem considered is three-dimensional plane turbulent Couette flow over two-
dimensional water waves. A sketch showing the flow orientation, coordinate system,
and the wavy lower boundary is given in figure 1. We adopt a coordinate system
where x is aligned with the primary flow direction, y is parallel to the wave crests
and z is measured vertically from the mean water surface. In our idealization, the
water wave is assumed to be a two-dimensional, periodic (in x), non-evolving, deep-
water gravity wave of wavelength λ, phase speed c, amplitude a, and wave slope
ak = a2π/λ. Typically, the wave slope is small but finite, i.e. ak < 0.1. The orbital
velocities at the water surface, which are included in the surface boundary conditions
(see § 2.5), are assumed to be given by first-order wave theory. For our computations
and analysis, the frame of reference is travelling with the waves, i.e. x = x′ − ct,
where t is time and x′ is an absolute coordinate. In (x, y, z) coordinates the water
surface displacements and orbital velocities are independent of time. The domain size
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is (Lx, Ly, h) = (6, 5, 1)λ and the air flow is assumed to be periodic in the horizontal
directions (x, y). A large-scale constant velocity Uo imposed at z = h drives the flow.
The wall friction velocity u∗ is based on the constant total stress τw , i.e. u∗ = (τw/ρ)1/2,
where ρ is the fluid density.

2.2. Governing equations

The flow field is assumed to satisfy the conservation equations for mass and momen-
tum for an incompressible fluid with density ρ and kinematic viscosity ν. In Cartesian
coordinates xi (i = 1, 2, 3) = (x, y, z) a dimensionless form for the set of governing
equations is

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+
∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, (2.2)

where ui (i = 1, 2, 3) = (u, v, w) are Cartesian velocity components and p is the pressure.
Velocity, length, time, and pressure are non-dimensionalized by Uo, h, h/Uo, and ρU2

o ,
respectively. The bulk Reynolds number is Re = Uoh/ν. The wave properties, namely
c, a, λ, k and the wall friction velocity u∗, which appear in the later discussion, are also
made dimensionless by Uo and h.

2.3. Coordinate transformation

The strategy is to transform just the coordinates in the governing equations into
a surface-fitted curvilinear system applicable to flow over two-dimensional moving
water waves. Simple conformal (and thus orthogonal) transformations exist which
will map the physical domain in figure 1 on to a flat computational domain. The
specialization of the mapping to a conformal transformation is not viewed as a
severe restriction in the present study as it minimizes the number of additional new
terms in the transformed equations (and hence the computational requirements), but
still permits adequate control over the grid spacing. Furthermore, pseudoconformal
transformations allow for arbitrary two-dimensional geometries that are periodic in
one direction (Mobely & Stewart 1980) which is the situation considered in the
present work.

We adopt the two-dimensional conformal mapping proposed by Benjamin (1959)
with the obvious extension to three dimensions ξ

η
ζ

 =

 x− iae−kzeikx

y
z − ae−kzeikx

 (2.3)

where (ξ, η, ζ) are surface-fitted coordinates and (ξ, ζ) are roughly aligned with the
Cartesian (x, z) coordinates. Only the real part of (2.3) is to be considered. The actual
boundary wave shape zbdy , obtained by setting ζ = 0 in (2.3) and retaining first-order
terms in ak, is

zbdy(x) ≈ a cos kx(1− ak cos kx). (2.4)

The lower boundary shape departs from a pure sinusoidal waveform with increasing
ak, producing flatter crests and deeper troughs. However, we investigate small values
of ak (see § 5) and the deviations from a pure sinusoidal shape are small. In the
physical plane, the vertical oscillation of a ξ-line rapidly diminishes with increasing
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z because of the exponential dependence in (2.3); the vertical variation of the upper
boundary grid line (kz = 2π) is much less than 0.1% and thus is considered uniform.

The metric elements connecting the Cartesian and curvilinear systems expressed as
functions of (x, y, z) are (subscripts here denote partial differentiation) ξx ξy ξz

ηx ηy ηz
ζx ζy ζz

 =

 1 + ake−kzeikx 0 iake−kzeikx

0 1 0
−iake−kzeikx 0 1 + ake−kzeikx

 . (2.5)

The coordinate transformation satisfies the Cauchy–Riemann conditions ∂ξ/∂x =
∂ζ/∂z and ∂ξ/∂z = −∂ζ/∂x, and therefore the Jacobian is

J =
∂ξ

∂x

∂ζ

∂z
− ∂ξ

∂z

∂ζ

∂x
=

(
∂ξ

∂x

)2

+

(
∂ξ

∂z

)2

. (2.6)

2.4. Governing equations in transformed coordinates

Using the chain rule, the set of governing equations (2.1) and (2.2) is next written in
surface-fitted coordinates ξi (i = 1, 2, 3) = (ξ, η, ζ) as

∂Ui

∂ξi
= 0, (2.7)

1

J

∂ui

∂t
= − ∂

∂ξj
Ujui − ∂

∂ξj

(
p

J

∂ξj

∂xi

)
+

1

Re

(
∂2ui

∂ξ∂ξ
+
∂2ui

∂ζ∂ζ
+

1

J

∂2ui

∂η∂η

)
, (2.8)

where the fundamental unknowns are the Cartesian velocity components ui and
pressure p. These equations are expressed in so-called strong conservation form (e.g.
Anderson, Tannehill & Pletcher 1984, p. 254) by using the identity

∂

∂ξj

(
1

J

∂ξj

∂xi

)
= 0. (2.9)

We have explicitly inserted the metric elements for an arbitrary two-dimensional con-
formal transformation into the viscous term of (2.8) which simplifies its appearance.
The continuity equation and the advective terms in the momentum equations are
expressed in terms of contravariant ‘flux’ velocities Ui (i = 1, 2, 3) = (U,V ,W ) defined
by

Ui =
uj

J

∂ξi

∂xj
. (2.10)

As a consequence of these contravariant flux velocities, the advective terms in trans-
formed coordinates retain a similar structure to their counterparts in (x, y, z) coordi-
nates.

2.5. Boundary conditions

The boundary conditions are chosen consistent with a direct numerical simulation
that resolves viscous wall layers along the upper and lower boundaries in figure 1,
while in horizontal planes periodic boundary conditions are assumed. Since the frame
of reference is moving with the wave phase speed c, the dimensionless boundary
conditions for the Cartesian and contravariant flux velocities at the upper boundary
(ζ = 1) are [

u v w
JU JV JW

]
=

[
1− c 0 0

(1− c)ξx 0 (1− c)ζx
]
. (2.11)
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Figure 2. Location of Cartesian velocity components (u, w), contravariant flux velocities (U,W ),
and pressure p in a two-dimensional (ξ, ζ) plane for the mixed finite-difference pseudospectral
differencing scheme. Cartesian and flux velocities (v, V ) aligned with the spanwise coordinate (y, η)
(not shown) are also located at cell centres.

At the upper boundary (ξx, ξz, J) → (1, 0, 1) and hence (U,V ,W ) → (1 − c, 0, 0)
because of the exponential dependence in (2.5).

At the lower boundary, the velocity components are matched to the first-order
(in ak) irrotational orbital velocities for a two-dimensional deep-water gravity wave
(Lighthill 1978)

(u, v, w)bdy = akc
(
cos k[x′ − ct], 0, sin k[x′ − ct]) . (2.12)

Thus, at ζ = 0 the velocity boundary conditions, in the frame of reference moving
with the waves, are[

u v w
JU JV JW

]
=

[
c(−1 + ak cos kx) 0 akc sin kx

−c 0 0

]
, (2.13)

where we have approximated the metric elements by ξx ≈ 1 + ak cos kx and ξz ≈
−ak sin kx. In the situation c = 0, the lower boundary conditions reduce to the
familiar no-slip conditions.

It should be noted that the governing equations and boundary conditions described
above are nonlinear and not fundamentally limited to small wave slope ak although
for the present study ak � 1. In this particular aspect, the set of equations differs
from many second-order closure models (e.g. Harris et al. 1996; Li 1995) that first
introduce a coordinate transformation and then a perturbation expansion in powers
of ak for the field variables.

3. Numerical method
The numerical method used to solve the system of equations (2.7) and (2.8) with

boundary conditions (2.11) and (2.13) builds on our prior successful experience with
LES of geophysical flows (Moeng 1984; Sullivan, McWilliams & Moeng 1996; and
McWilliams, Sullivan & Moeng 1997) and the co-located grid architecture described
by Zang, Street & Koseff (1994). In order to accommodate curved, non-stationary
boundaries our usual LES staggered grid arrangement is replaced by a cell-centred
(or co-located) arrangement for all variables as shown in figure 2. Centred schemes,
commonplace in the engineering community (e.g. Ferziger & Perić 1996), are ad-
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vantageous since large boundary slopes can be easily treated and the differencing
stencil is the same for all variables. The crucial idea of the co-located scheme is to
evaluate all forces at cell centres for calculating the velocity tendency, but interpolate
the forces to the cell faces to enforce the continuity equation through the calcula-
tion of pressure from the divergence of the momentum equations. This mimics a
three-dimensional staggered grid arrangement, and the pressure and velocity fields
remain tightly coupled. The momentum-interpolation method, first proposed by Rhie
& Chow (1983), has been used successfully in Reynolds-averaged closure calculations,
but its performance for turbulence simulations is relatively recent (Zang et al. 1994
and Morinishi et al. 1998). A drawback of the co-location method is that for inviscid
flows strict energy conservation is broken since different discrete divergence operators
are used in the continuity equation and the pressure gradient term in the momentum
equations. However, the spatial order of this error is less than the discretization error
of the basic scheme (Ferziger & Perić 1996, p.188).

The type of spatial differencing dictates the positioning of the contravariant flux
velocities relative to the cell-centred Cartesian velocities. In the present DNS code,
the spatial differencing is pseudospectral along transformed horizontal coordinates
and second-order finite difference in the transformed vertical direction (see § 3.1). For
this mixed differencing scheme, the natural location of U and V is at cell centres with
W positioned at upper and lower cell faces as sketched in figure 2. In a completely
finite-difference algorithm all flux velocities are located at cell faces (Zang et al.
1994). The particular cell-centred arrangement used here coupled with a conformal
grid transformation requires storage for only three metric quantities, (ξx, ξz, J). This
is in contrast to staggered grid methods which need storage for large numbers of
metric elements (e.g. Rosenfeld, Kwak & Vinokur 1991).

3.1. Spatial and temporal discretization

The flows of interest are assumed to be periodic in (ξ, η)-planes so that spatial
derivatives ∂/∂ξ and ∂/∂η can be evaluated using fast Fourier transforms as in a
standard pseudospectral method. All vertical derivatives ∂/∂ζ are evaluated using
second-order finite differences that account for non-uniform vertical spacing (see
§ 3.3).

The advective terms in the momentum equations are discretized in so-called skew-
symmetric form (Arakawa 1966), i.e. ∂Ujui/∂ξj = 1

2

(
∂Ujui/∂ξj +Uj∂ui/∂ξj

)
. Zang

(1991) performed extensive tests, in turbulent flows, comparing skew-symmetric and
rotational forms of the advective terms and concluded that the skew-symmetric
formulation is superior even in the presence of aliasing errors. Finally, after each time
step flow variables are dealiased in (ξ, η)-planes using the 2/3 rule (Gottlieb & Orszag
1977).

The flow variables are advanced from time step |n to |n+1 using a third-order
three-substep Runge–Kutta method (Spalart, Moser & Rogers 1991). All variables
are treated explicitly and the pressure is determined as in a fractional step scheme
that satisfies the incompressibility condition at the end of each substep. The rule to
advance the Cartesian velocity variables at any substep k is

ui|k = ûi|k−1 − ∆tγkJ
∂

∂ξj

(
p

J

∂ξj

∂xi

)∣∣∣∣k−1

, (3.1)
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where the intermediate velocity

ûi|k−1 = ui|k−1 + ∆tγkJRi|k−1 + ∆tψkJ

[
Ri − ∂

∂ξj

(
p

J

∂ξj

∂xi

)]∣∣∣∣k−2

, (3.2)

is not constrained by continuity. In (3.2), Ri denotes all terms on the right-hand sides
of the momentum equations (2.8) except the pressure. The superscript k (k = 1, 2, 3)
denotes the Runge–Kutta substep such that u|k−1 = u|n for k = 1 and u|k = u|n+1

for k = 3. The weights associated with the third-order Runge–Kutta method are
γk = (8/15, 5/12, 3/4) and ψk = (0,−17/60,−5/12).

The contravariant flux velocities are advanced to the new time level (similarly to
their Cartesian counterparts) according to the rule

Ui|k = Ûi|k−1 − ∆tγk
J

∂ξj

∂xm

∂ξi

∂xm

∂p

∂ξj

∣∣∣∣k−1

, (3.3)

which results from substituting (3.1) into (2.10) and the definition of the intermediate
contravariant flux velocities:

Ûi|k−1 =
ûj |k−1

I

J

∂ξi

∂xj
. (3.4)

Expression (3.3) differs from (3.1) in that the pressure term is written in chain-rule
form instead of strong conservation form (this is advantageous when the pressure
Poisson equation is developed). The crucial step in expression (3.4) is the computation
of the intermediate velocity ûi. We follow Zang et al. (1994) and interpolate the
intermediate velocity components ûi to the same location as Ui using a second-order-
accurate method (interpolated variables are indicated by the subscript I). For the
mixed pseudospectral finite-difference scheme, interpolation is only needed in the
construction of the normal contravariant flux velocity W . Cell-centred U and V are
constructed by rotations and scalings of the cell-centred velocity vector ui. Finally,
the time step is computed dynamically using a fixed Courant–Fredrichs–Lewy (CFL)
condition.

3.2. Pressure Poisson equation

The pressure Poisson equation is developed from the continuity equation (2.7) ex-
pressed in terms of the contravariant flux velocities. Application of the divergence
operator ∂/∂ξi to (3.3) and restricting our attention to two-dimensional conformal
transformations leads to the pressure Poisson equation

∂2p

∂ξ∂ξ
+

1

J

∂2p

∂η∂η
+

∂2p

∂ζ∂ζ
=

1

∆tγk

∂Ûi

∂ξi
, (3.5)

which applies at each substep k. Notice that except for the variable coefficient that
appears in the η-derivatives (3.5) is identical to its counterpart in the case of flat
boundaries.

Our pressure solver uses an iterative approach that determines p from[
∂2p

∂ξ∂ξ
+

∂2p

∂η∂η
+

∂2p

∂ζ∂ζ

]
m

=
1

∆tγk

∂Ûi

∂ξi
+

[
∂2p

∂η∂η
− 1

J

∂2p

∂η∂η

]
m−1

, (3.6)

where m denotes the iteration level. The pressure equation (3.6) at iteration m is solved
using standard methods starting from a previous estimate of the pressure at iteration
m−1 (e.g. Sullivan et al. 1996). Equation (3.6) is repeatedly solved until the maximum
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difference |pm−pm−1| satisfies a prescribed convergence criterion. Because of the global
nature of our pressure solution procedure (two-dimensional Fourier transforms and
tridiagonal matrix inversions), the convergence of (3.6) is independent of the number
of grid points used. We found that with ak = 0.1, ∂Ui/∂ξi was converged to machine
zero after about 10 iterations of the pressure solver. We should mention that the
overall computational cost could be reduced by using the numerical scheme described
by Le & Moin (1991) which only requires a solution of the Poisson pressure equation
at the last Runge–Kutta substep.

The specification and numerical implementation of boundary conditions for the
pressure equation mimic those used in our LES algorithm (Sullivan et al. 1996). We
use periodic boundary conditions in horizontal planes and Dirichlet conditions on
the normal component of the contravariant flux velocity W at the boundaries, i.e.
specifying W along the upper and lower boundaries at the new time level (see § 2.5)
is sufficient to determine the pressure.

3.3. Grid generation

The physical-space grid is built by specifying the point distribution in (ξ, η, ζ)-space
and then inverting the coordinate transformation, i.e. a particular (x, y, z) is found
by iterating equation (2.3) at each particular value of the transformed coordinates.
Equally spaced distributions of ξ and η are used while in the ζ-direction a stretched
grid is employed to resolve the viscous wall layers. Non-uniform ζ spacing with
clustering near the vertical boundaries and smooth variation in the domain interior
is generated with constant algebraic stretching Ks = ∆ζl+1/∆ζl . Here the stretching
factor Ks, the ratio of the spacing ∆ζ between any two adjacent vertical nodes l and
l+ 1, is determined by specifying ζ1 and the total number of vertical points. A typical
value for the grid resolution used here (see § 5) is Ks = 1.03.

4. Laminar Couette flow over a wavy boundary
Prior to attempting turbulent calculations of flow over moving surface waves several

validation checks of our simulation code were performed. In order to test the surface-
fitted grid capability, we simulated two-dimensional laminar Couette flow over a
stationary wavy boundary similar to that in figure 1. Benjamin (1959) investigated
several variants of this idealized flow theoretically and provides closed form solutions
for surface pressure and shear stress under the restrictions of small wave slope, zero
phase speed, high Re, and linear velocity profiles. These analytic solutions provide
a convenient benchmark for testing our code. Our co-located three-dimensional
code was used to simulate laminar Couette flow with the caveats that a minimal
number of spanwise grid points (6 in our case) were used and no disturbances were
introduced into the flow. Since three-dimensional disturbances are never triggered the
flow remains two-dimensional at all times. Linear (in ζ) u-velocity profiles were used
as initial conditions and the computations were carried out at Re = Uoλ/ν = 104

using 24× 6× 32 grid points in a computational box of size (Lx, Ly, Lz)/λ = (1, 1, 1),
which is smaller than that shown in figure 1. The first vertical gridpoint was located
at ζ+ = ζu∗/ν = 0.5. Computations were carried forward until the solutions reached
a steady state.

In figure 3, computational results are compared with linear theory (Benjamin 1959
equations (5.6) and (5.9)) for the surface pressure p and stress τ, normalized by
u2∗, for two different wave slopes ak = (0.01, 0.2). At the smaller wave slope, the
computations agree quite well with the analytic results for the grid resolution used.
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Figure 3. Comparison of normalized surface pressure p/aku2∗ and shear stress τ/u2∗ from asymptotic
theory (Benjamin 1959) (lines) and numerical calculations (dots) for two-dimensional laminar
Couette flow at Re = 104 and c = 0. (a) wave slope ak = 0.01, (b) ak = 0.2. Normalized wave profile
zbdy/a is shown for reference.

The phase location of the peak maximum pressure and minimum shear stress ahead
of and behind the wave trough are faithfully captured by the numerics in agreement
with the theory. With increasing wave slope the computational solutions gradually
depart from the linear theory. At ak = 0.2 (where the theory is not expected to be
applicable), we see significant deviations from a sinusoidal waveform. The adverse
pressure gradient ahead of the wave crest is sufficiently strong to induce a small
separated region as evidenced by the negative values of surface stress. Higher wave
slopes ak = 0.3 (not shown) lead to even larger separated flow regions at this value
of Re. In figure 4, the form stress or pressure drag

Dp =
1

λ

∫ λ

0

p
dzbdy
dx

dx, (4.1)

is plotted as function of the wave slope. Below ak < 0.1 the drag estimates from the
computations agree quite well with the linear theory, while at ak > 0.1 finite wave
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Figure 4. Comparison of normalized form stress (drag) between asymptotic theory (line) and
numerical calculations (symbols) for two-dimensional laminar Couette flow at Re = 104 and c = 0.
(◦, +) 24× 6× 32 and 48× 6× 32 grid points, respectively.

amplitude effects are important and the actual pressure drag falls below the theoretical
predictions. A small part of the difference between the theoretical predictions and
computations is the departure of the lower boundary (in the computations) from a
purely sinusoidal shape with increasing ak (see § 2.5). Also shown in this figure is an
additional calculation using a resolution of 48×6×32 gridpoints at the highest wave
slope considered. Solutions at ak = 0.3 far exceed the regime of validity for the linear
theory. Additional grid refinement tests (not presented) that varied the number of
gridpoints in both (ξ, ζ) showed that the lowest resolution 24 × 6 × 32 calculations
considered produced grid-independent solutions.

5. The turbulent Couette flow experiments
For our turbulence simulations, we consider cases with different values of a and

c, including one with a flat, stationary boundary (a = c = 0). We choose the
Reynolds number sufficiently large (Re = Uoh/ν = 8000) so that the turbulence is fully
developed. This Reynolds number is well beyond the transitional value (Re ≈ 2000)
reported by Bech et al. (1995). Our Reynolds number is about a factor of 3 higher
than the simulations of Komminaho et al. (1996) and Bech et al. (1995), but 30%
less than the simulation of Papavassiliou & Hanratty (1997). The corresponding wall
Reynolds number (Re∗ = u∗h/2ν) is about 130.

The number of gridpoints employed is (Nx,Ny,Nz) = (144, 96, 96) which is adequate
to capture the dissipation range at our Reynolds number. The vertical spacing ∆ζ
varies from 0.025/k near the surfaces to 0.136/k in the middle of the channel (see § 3.3);
these spacings are equal to 1.0 and 5.5 in wall units, ∆ζ+ = ∆ζu∗/ν.† In the (ξ, η)
directions, ∆(ξ, η) = (0.262, .327)/k or ∆(ξ+, η+) = (10.8, 13.5). Our computational
domain accommodates six waves in the ξ-direction, and thus we have 24 gridpoints
per waveform. These grid spacings are comparable to other DNS of turbulent Couette
flow over a flat boundary (e.g. Komminaho et al. 1996).

The choice of computational domain size, a, λ, and Re represent a compromise
between the competing needs to have small a with minimal flow disturbances in the

† Throughout our discussion, velocity and length scales normalized by wall variables, i.e. (u∗, ν/u∗),
are indicated by ( )+.



58 P. P. Sullivan, J. C. McWilliams and C.-H. Moeng

ak c c/u∗ c/uλ u∗ × 102 Dp/u
2∗ κ z+

o [uwww]/〈uw〉 [u2
w]/〈u2〉

0 0 0 0 3.13 0 0.41 0.17
0.1 0 0 0 3.21 0.129 0.41 0.22 −0.133 0.016
0.1 0.125 3.91 0.226 3.20 0.181 0.35 0.60 0.072 0.119
0.1 0.25 7.84 0.453 3.19 0.124 0.34 0.71 0.271 0.347
0.1 0.365 11.5 0.652 3.17 0.022 0.39 0.26 0.226 0.332
0.1 0.50 16.2 0.879 3.08 −0.016 0.35 0.39 0.148 0.369
0.1 0.70 22.7 1.232 3.08 −0.035 0.37 0.27 0.047 0.441
0.2 0.25 7.32 0.476 3.42 0.262 0.34 1.47 0.538 0.644

Table 1. Simulation properties

upper half of the channel and at the same time large a so that the wave effects are
visible at finite Reynolds number. The majority of the computations were conducted
with wave slope ak = 0.1 (see 1) which is considered an acceptable compromise. We
are aware that increasing Re would permit further reductions in wave amplitude but
only at the expense of significant computational effort in our DNS.

All simulations were started from a linear profile in ζ for the mean horizontal
velocity with zero initial perturbations for the velocity fields. Turbulence was triggered
by small random perturbations in a temperature field, which was temporarily added as
a gravitational force to the w momentum equation. After 120 time steps, this buoyancy
forcing was turned off and each simulation was integrated for more than 15 000 time
steps, which is more than 300 large-scale (tUo/h) or 2400 viscous (tu2∗/ν) time units.
Statistics were obtained by a combination of spatial and temporal averaging beginning
at time step 5000 (the method used to generate spatial averages over waves is described
in § 7.1). Some of the bulk statistics were computed at every time step, but others
were obtained from post-processing 100 three-dimensional data volumes which were
archived at every 100 time steps.

A summary of the bulk simulation properties is given in 1 which lists the wave slope
ak, dimensionless phase speed c, wave age c/u∗ and c/uλ, the non-dimensional friction
velocity u∗, form stress Dp/u

2∗, von Kármán constant κ, and dimensionless roughness
length z+

o . The method for estimating the log-law constants (κ, z+
o ) is described in

§ 7.4. The alternative form of wave age c/uλ uses the mean horizontal velocity at
one wavelength above the surface uλ (see §§ 7.3 and 7.4). The ratios [uwww]/〈uw〉
and [u2

w]/〈u2〉 included in table 1 quantify the contribution of the wave-correlated
components to the vertical momentum flux and horizontal velocity variance as a
function of wave age at a fixed height above the waves, z = 0.035 or kz = 0.22. This
vertical location is approximately twice the wave amplitude from the mean water
surface when ak = 0.1.

6. Turbulent flow over a flat and stationary lower boundary
An important test of the non-staggered cell-centred algorithm is its ability to

simulate turbulent flows since co-located schemes have traditionally only been used
for low-Re steady flows. In order to validate the simulation code on a benchmark
turbulent flow and at the same time establish a baseline for the effects of surface waves,
we consider a flat, stationary lower boundary with all other parameters remaining
fixed, thus (ξ, η, ζ) ≡ (x, y, z). This flow then corresponds to classical turbulent Couette
flow.
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Figure 5. Vertical profile of mean horizontal velocity 〈u〉 for turbulent Couette flow with flat upper
and lower walls at Re = 8000: (a) non-dimensional global coordinates; (b) wall coordinates where
dotted line is u+ = z+, line is log-law u+ = (1/κ)ln z+ + b with (κ, b) = (0.41, 4.3), and large dots
are computations.

In figure 5, the vertical profile of the mean horizontal velocity component is shown
in non-dimensional global coordinates (u, z) and in wall variables (u+, z+). As expected
the profile is symmetric about the centreline (figure 5a) with sharp gradients near
the walls and a more uniform profile in the centre. In wall variables (figure 5b), the
variation of the u+ profile is typical of wall-bounded shear flows; it exhibits a linear
region near the wall where u+ = z+, a buffer (transition) region near z+ = 10, and
a log-linear variation u+ = (1/κ)ln z+ + b which extends to the channel centreline.
We found the log-law constants (κ, b) = (0.41, 4.3). Reported values of the log-law
constants for turbulent Couette flow over a flat surface, obtained from experiments
and other DNS, are in the ranges 0.39 6 κ 6 0.43 and 4.5 6 b 6 6.0 (Papavassiliou
& Hanratty 1997; and Komminaho et al. 1996). The experimental data of Aydin &
Leutheusser (1991) follow the same trends as our simulation, and also show that the
velocity profile at the centre-line becomes more uniform with increasing Re. Overall
our mean profiles are consistent with the existing simulations and experimental
data.

Under steady conditions, a volume integral of the u momentum equation shows
that the total mean vertical stress

−〈uw〉+
1

Re

d〈u〉
dz

= u2
∗, (6.1)

is constant at any z in Couette flow. Figure 6 depicts the turbulent, viscous and
total stress components normalized by u2∗ for the present calculations. Our simulation
results closely satisfy condition (6.1) at all z. The turbulent flux 〈uw〉 is dominant
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Figure 6. Vertical profile of mean vertical turbulent flux 〈uw〉 (thin line), viscous flux−(1/Re)d〈u〉/dz
(dash-dotted line), and their sum (thick line) normalized by u2∗ for Couette flow with flat upper
and lower walls, present calculations Re = 8000. Data from Aydin & Leutheusser (1991); closed
symbols Re = 5408, open symbols Re = 9524.

over most of the domain with the viscous contribution only significant in a thin
region near the boundaries. For comparison, we have included the data of Aydin &
Leutheusser (1991) who report measurements of turbulent Reynolds stress, i.e. just
〈uw〉, for a turbulent Couette flow at Reynolds numbers that are comparable to the
present computation. The experimental data, although scattered, show a similar trend
to our computation.†

In figure 7, the root-mean-square (r.m.s.) velocity fluctuations for each of the
components normalized by the friction velocity (u, v, w)rms/u∗ are displayed in global
and wall coordinates. The profiles are symmetric about the channel centreline (see
figure 7a) as expected. Compared to pressure-driven channel flow the streamwise
component at the channel centreline is about a factor of two higher because of
the finite mean shear at this position. The streamwise velocity fluctuations attain a
maximum u+

rms = 2.77 near z+ ≈ 15 in close agreement with other wall-bounded shear
flows, e.g. Kim, Moin & Moser (1987) find (u+

rms, z
+) = (2.7, 15). Our computation

is in good agreement over the entire domain with the measurements of Aydin &
Leutheusser (1991). Note that the DNS of Papavassiliou & Hanratty (1997) are in
good agreement with our results despite a difference in the computational box size;
their computational domain was (2π, π, 1)h. A smaller domain tends to increase the
turbulence variances (Komminaho et al. 1996).

† Aydin & Leutheusser comment that high turbulence intensity near the wall adversely affects
their slanted hot-wire sensors used to measure turbulent flux 〈uw〉.
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Figure 7. Vertical profile of root-mean-square velocity fluctuations normalized by wall friction
velocity for Couette flow with flat upper and lower walls at Re = 8000: solid line, urms; dash-dotted
line, vrms and dotted line, wrms: (a) Non-dimensional global coordinates; (b) wall coordinates. Data
from Aydin & Leutheusser (1991): closed symbols Re = 5408, open symbols Re = 9524. DNS
results from Papavassiliou & Hanratty (1997): × symbols Re = 10640.

7. Results for turbulent flow over a moving wavy lower boundary
7.1. Analysis procedures

In the surface layer of the marine boundary layer, the majority of data sampling,
analysis, and interpretation is carried out in a flat Cartesian frame of reference, despite
the presence of a geometrically complex lower boundary. Surface layer measurements
are usually made well above the tops of the highest waves, and hence no information is
obtained about the flow structure very near the air–sea interface. In order to establish
a connection with surface layer studies, the analysis and flow visualization in the
present work were carried out using both surface-fitted (ξ, η, ζ) and flat Cartesian
(x, y, z) coordinates. Each coordinate system has certain advantages and both have
been employed in wind–wave laboratory experiments; e.g. Hsu, Hsu & Street (1981)
and Hsu & Hsu (1983), use surface-following coordinates while Kendall (1970), and
Mastenbroek et al. (1996) use a Cartesian frame. Also, results from the recent air–sea
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interaction experiments reported by Edson & Fairall (1998) and Hristov et al. (1999)
were presented in a Cartesian reference frame. Disadvantages of using a Cartesian
frame in wind–wave laboratory experiments, as well as in field observations, are the
difficulty of positioning probes very close to the interface and the inability to describe
the flow near and below wave crests. Despite these drawbacks, the simplicity of using a
stationary measuring platform makes fixed probe measurements, and hence Cartesian
coordinates, attractive. Accordingly, the flow statistics will depend somewhat on which
of the coordinate systems is used.

Simulation results in surface-fitted coordinates were interpolated onto a flat Carte-
sian grid for analysis using a second-order-accurate method. The Cartesian grid was
selected to have the same number of points as the parent surface-fitted grid with
uniform spacing in x and y. In the z-direction, a non-uniform point distribution
identical to that above a wave crest in the surface-fitted grid was adopted. In the
Cartesian frame, the closest approach to the wave form occurs just above wave crests,
while the grid lines are slightly more than 2a above wave troughs. Thus, we are able
to examine the flow characteristics in a Cartesian frame at much closer proximity to
the waves than is feasible in wind–wave investigations that use fixed probes.

One of the objectives of this study is to identify wave–turbulence interactions and
in particular to isolate motions induced by the presence of surface waves. Thus,
both ensemble and so-called ‘phase’ averages (Hussain & Reynolds 1970) are used to
quantify the statistical properties of the flow as well as identify the organized wave
components. In a Cartesian frame, an arbitrary random signal f can be defined by
(e.g. Hsu et al. 1981)

f(x, y, z, t) = 〈f〉(z) + fw(x, z) + f′(x, y, z, t), (7.1)

where 〈f〉(z), fw(x, z), and f′(x, y, z, t) are ensemble, wave-correlated, and uncorrelated
turbulent components, respectively. The ensemble average 〈f〉(z) results from aver-

aging over all (x, y, t). We define a conditional phase average f(x, z) as an average
over (y, t) and also periodically imaged in x with length λ. Then the wave-correlated
component is the difference fw(x, z) = f(x, z) − 〈f〉(z). A streamwise average of
a wave-correlated component is denoted [fw](z). The averaging methods discussed
above are independent of the choice of coordinate systems and thus we will also
present statistics in our surface-fitted coordinates replacing (x, y, z) by (ξ, η, ζ).

7.2. Flow visualization

Figure 8 is a visualization of the total fluctuating horizontal velocity (wave-correlated
uw plus turbulent u′ components) in a (ξ, η)-plane near the surface for flow over a flat
boundary and three cases with moving wavy walls, c/u∗ = (3.9, 7.8, 22.7) with ak = 0.1.
In the absence of waves, the near-surface flow pattern is dominated by streamwise
streaky structures which alternate in sign in the spanwise direction, a pattern typical of
all flat-wall boundary layers. In the presence of waves, the flat-wall streaky structure
is disrupted and the wave forcing leads to small organized pockets of positive and
negative fluctuating velocity with horizontal length scales roughly equal to λ/2. The
position of the positive and negative extrema relative to the wave crest depends on
c/u∗. For example, the position of maximum uw +u′ for slow moving waves c/u∗ = 3.9
occurs between the wave crest and trough, while for fast moving waves c/u∗ = 22.7
the maximum is centred on the wave crest (see § 7.7). The signature of the wave
forcing is most apparent for very slow and fast moving waves. In case c/u∗ = 7.8, the
proximity of the critical layer to the lower surface has a significant influence on the
flow dynamics (see § 7.6). Flow visualization of the fluctuating u-velocity field (not
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shown) reveals large coherent structures at the domain centreline similar to those
reported by Komminaho et al. (1996) and others. Our visualization indicated that
the moving wavy lower boundary did not appreciably alter these long-lived large
coherent structures, which form far above the wavy surface.

The importance of waves to the vertical momentum flux is illustrated in figure 9
where a snapshot of the instantaneous flux field uw = (uw + u′)(ww + w′) close to
the surface is shown. In the flat boundary case the majority of the turbulent flux
is negative and is confined to a few narrow elongated streaky structures. A flux
decomposition into quadrants Q1 (uw +u′, ww +w′ > 0), Q2 (uw +u′ < 0, ww +w′ > 0),
Q3 (uw + u′, ww + w′ < 0), and Q4 (uw + u′ > 0, ww + w′ < 0), shows that the flux
is dominated by Q2 and Q4 motions in the flat case, i.e. by ejections and sweeps.
With increasing c/u∗ the presence of moving waves clearly alters the flux pattern:
both negative and positive pockets appear in the flow visualization. Compared to the
flat case, the amplitude of the flux variation with fast moving waves is considerably
larger but with a length scale tied to the waves. The quadrant analysis shows a shift
in the flux decomposition from Q2 and Q4 (the flat case) to one with more equal
contributions from all four quadrants. The appearance of significant Q3 motions
coupled with the increase in Q2 is indicative of strong wave forcing that is in
quadrature. In an experimental study, Papadimitrakis, Street & Hsu (1988) report
that the flux contributions by quadrants are strongly dependent on c/u∗ and the
location of the critical layer relative to the water surface.

7.3. Form stress

One of the crucial differences in flow over waves as compared to flow over a flat
surface is the presence of a surface form stress (or drag). Knowledge of the form
stress is of importance because it directly influences wave growth (e.g. Belcher &
Hunt 1998). Temporal and three-dimensional spatial integration of the u momentum
equation (2.8) in surface-fitted coordinates leads to the flux balance

−〈Wu〉 −
〈p
J
ζx

〉
+

1

Re

∂〈u〉
∂ζ

= u2
∗, (7.2)

in the presence of surface waves. Thus, the total flux is conserved along constant-ζ
lines, but the viscous and turbulent fluxes are augmented by a pressure flux resulting
from the curvature of the ζ-coordinate lines. At the lower boundary ζ = 0, u2∗ is
balanced by both pressure and viscous terms while at ζ = 1 the viscous term equals
u2∗. (Note that by using the identity ζx/J = −zξ the pressure term in (7.2) can be
shown to be identical to the form stress in equation (4.1) at ζ = 0). In a Cartesian
coordinate system, there is no pressure contribution along a level surface and the flux
balance at all z above the wave crests is equally described by (6.1).

In order to quantify the magnitude of the pressure contribution, we computed
the surface form stress according to equation (4.1) and present the results in figure
10(a) as a function of wave age c/u∗ at fixed wave slope ak = 0.1. The maximum
normalized form stress Dp/u

2∗ is slightly less than 19%. At ak = 0.2 the form stress
is larger, 30% of u2∗ (see table 1). The form stress in figure 10(a) is observed to
be a strong function of wave age. At small c/u∗, the form stress is positive and
acts in concert with the viscous stress to decelerate the flow near the wall, while
at large c/u∗ an opposite trend is observed: the surface form stress is negative and
acts as a thrust in opposition to the surface viscous stress. The critical value of c/u∗
that marks this transition occurs at c/u∗|tr ≈ 14. For comparison, the results from
various second-order closure calculations (Li 1995) are also shown in figure 10(a).
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Figure 8. Fluctuating velocity (uw + u′)/u∗ in a horizontal plane near the lower boundary
ζ+ = 5.2; (a) flat case; (b) (c/u∗, ak) = (3.9, 0.1); (c) (7.8, 0.1); (d) (22.7, 0.1).

Our DNS calculations are similar in magnitude, but clearly suggest a c/u∗|tr less than
the turbulence closure calculations. This shift is primarily attributable to the different
Reynolds number and roughness condition of the lower boundary. The calculations of
Li (1995) assume the lower surface is aerodynamically rough and the flow is Reynolds
number independent so that the mean velocity profile is presumably logarithmic right
down to the water surface. Both Reynolds number and surface roughness influence
the form drag (Harris et al. 1996 and Gent & Taylor 1976). Field observations (see
figure 6 from Gent 1977) also predict a similar sign change of the surface form stress
with increasing wave age, although the data for fast moving waves are scattered. Gent
& Taylor (1976) and Gent (1977) using a nonlinear model with a turbulence closure
also predict a sign change of the form stress with increasing wave age.

The sensitivity of the transition point c/u∗|tr to Reynolds number is not entirely
unexpected because of the known dependence of u∗ on Re. In an attempt to eliminate
this dependence, we consider the drag estimates versus a wave age based on c and
a characteristic mean velocity, c/uλ, shown in figure 10(b). Here, uλ is the mean
horizontal velocity at a height of one wavelength above the surface z = λ (the
wind profiles in § 7.4 are used to estimate uλ). In terms of c/uλ, the variation of the
transition point is much less (0.8 to 0.9), suggesting that the transition point scales
with the outer mean velocity over a significant range of Reynolds number. However,
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Figure 9. Vertical momentum flux (uw + u′)(ww + w′)/u2∗ in a horizontal plane near the lower
boundary ζ+ ≈ 15: (a) flat case; (b) (c/u∗, ak) = (7.8, 0.1); and (c) (c/u∗, ak) = (22.7, 0.1). Panels on
the right depict the flux decomposition by quadrants.

the magnitude of the maximum form stress still increases with decreasing Reynolds
number, a trend also predicted by the asymptotic analysis of Benjamin (1959) and
the numerical results of Harris et al. (1996).

In the discussion that follows, we categorize the flow by wave age, either as young
(slow moving) waves c/u∗ < c/u∗|tr (with positive form stress) or old (fast moving)
waves c/u∗ > c/u∗|tr (with negative form stress). We note that our classification differs
from that used by Belcher & Hunt (1998). They classify the flow regime by wave
age based on the height of the inner equilibrium layer; they predict slow waves
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Figure 10. Surface form stress normalized by u2∗ as function of (a) c/u∗ and (b) c/uλ with ak = 0.1.
Values from our DNS are marked with solid dots, and the open symbols indicate values from three
different turbulence closure calculations by Li (1995): E−κz (�), q2l (�), and Launder–Reece–Rodi
(×) turbulence models.

c/u∗ < 15, intermediate waves 15 < c/u∗ < 25, and fast waves 25 < c/u∗. However,
their quantitative classification based on c/u∗ is not directly applicable to the present
case since they consider flows with rough walls and infinite Reynolds number.

7.4. Mean velocity profiles

The effect of moving water waves on the mean velocity profiles is one of the open
questions in air–sea interaction. Does the presence of moving waves modulate the
near-surface flow leading to departures from the usual log-law variation over a
stationary flat surface? In order to examine this issue, we compared the mean velocity
profiles from our simulations to the log-law

u+ =
1

κ
ln z+ + b ≡ 1

κ
ln
z+

z+
o

≡ 1

κ
ln

z

zo
, (7.3)

which was assumed to apply to all profiles starting at z+ > 25. A least-squares curve
fit of the profiles determined κ and b, and hence z+

o = e−κb (Yaglom 1979). We
estimate the error bar associated with determining κ, b, and z+

o to be smaller than
1%.

The variation of the log-law constants in table 1 implies a small but persistent
effect on the von Kármán constant: κ is about 10% lower in the presence of moving
waves compared to either a flat surface or a stationary wavy surface with ak = 0.1.
This change is attributed to the wave motion since the variation of Re across all the
simulations is quite small, less than 4%. Cases with large positive form stress, i.e. slow
moving waves, have slightly lower values of κ than fast moving waves. The value of
κ near the transition between positive and negative form stress is only slightly lower
than the value obtained over a flat surface.

The effect of waves on the roughness length z+
o is however quite pronounced. Given

the relatively small variation in κ and the dependence z+
o = e−κb, our results show

that the change in z+
o with wave age is dominated by changes in the log-law intercept

b. The utility of z+
o is its basis for classifying the sea surface condition. For example,

Kitaigorodskii & Donelan (1984) summarize a large body of observations over the
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Figure 11. Vertical profiles of mean velocity for flow over moving waves of varying c/u∗ and ak at
Re∗ = 130. Note that the log-law constants in table 1 are used to collapse the profiles.

ocean and propose the following classification of the sea surface state: z+
o ≈ 0.1

smooth, 0.1 < z+
o < 2.2 transitional, and z+

o > 2.2 fully rough. The authors further
state that the transitional regime is a common sea state. Based on the above criterion,
the surface conditions in the present simulations are in the low to middle transitional
regime except for case (c/u∗, ak) = (7.32, 0.2) that just approaches the bottom of the
fully rough regime. The fact that our predicted z+

o lies in the transitional regime
suggests that the current low-Reynolds-number DNS simulations are potentially
relevant to the geophysical regime.

We found a strong link between roughness length and wave age: slow moving
waves are characterized by large z+

o while fast moving waves have small z+
o . This

is consistent with the form stress variation in figure 10, where slow moving waves
have larger positive drag. With fixed ak, the presence of moving waves can also
compound the roughness effect, e.g. z+

o is larger for case (c/u∗, ak) = (7.8, 0.1) than
for case (c/u∗ = 0.0, 0.1). The complicating influences of moving waves is further
illustrated if we compare z+

o over a smooth flat surface with case (c/u∗, ak) = (22.8, 0.1).
Surprisingly, z+

o is only slightly greater in the presence of finite-amplitude fast moving
waves indicating that the lower surface in this case is nearly as smooth as flow over
a flat boundary. The speculation that in certain instances moving waves can act as
a supersmooth surface was also noted by Hsu & Hsu (1983). Their results were
obtained in a wind–wave laboratory experiment at larger Reynolds number and were
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2∗.

attributed to the presence of a surface drift current. In the present DNS, the drift
current is set to zero and the change in the effective surface roughness is primarily
a result of the sign change of surface form stress and indirectly the location of the
critical height as will be discussed later (see § 7.6).

In figure 11, vertical profiles of the mean horizontal velocity in log-linear coordinates
obtained by analysing the flow in a Cartesian frame (x, y, z) are displayed for varying
c/u∗. (Note the dimensionless phase speed is included in the mean profiles, z is
measured from the mean water surface, and the constants κ and z+

o are taken from
1.) All the profiles collapse to the log-linear variation beyond z/zo > 100. Below
z/zo < 100 the profile variation depends on wave age and wave slope. The general
trend is that cases with larger z+

o display a shorter buffer region and longer logarithmic
regions. Notice that for case (c/u∗, ak) = (7.3, 0.2), the velocity profile is near log-linear
starting from the crests of the waves, indicative of its approach to the fully rough
regime.

7.5. Turbulence statistics

Vertical profiles of the mean turbulent momentum flux 〈uw〉 (i.e. the sum of turbulent
and wave-correlated contributions) obtained in the (x, y, z) coordinate system are next
shown in figure 12 as function of the non-dimensional distance kz above the mean
water surface. The dominant wave effects are confined to the region kz < 1 and the
variation near the wave surface is complex, depending on both wave age and wave
slope. Once again the results can be grouped by wave age c/u∗. This is illustrated
in figure 12(b) where the variation of the vertical momentum flux difference, i.e. the
momentum flux over waves minus its counterpart over a flat surface at the same
kz, is depicted. The momentum flux difference can be as much as 40% of u2∗ and
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Figure 13. Profiles of the average horizontal velocity variance, 〈u2〉/u2∗,
for several values of c/u∗.

hence the presence of a moving wavy surface significantly alters the near-surface
turbulent flux. Waves moving slower than c/u∗|tr generate more negative turbulent
flux compared to their flat-plate counterparts while fast moving waves display an
opposite trend (consistent with the change in form stress). However, very near the
surface, the presence of moving waves leads to a more negative average turbulent
flux irrespective of c/u∗. These results indicate a complex wave–turbulence interaction
near the surface and that the wave-correlated flux is significant (see § 7.7). Evidence for
a significant wave contribution is provided in table 1 where the wave-correlated flux
can be nearly 30% of the total turbulent flux at kz = 0.22 depending on wave age. It
should also be noted that the turbulent flux enhancement that occurs near the surface
is greater than might be inferred by the form stress; e.g. at (ak, c/u∗) = (0.1, 7.8) the
form stress is 12% of u2∗ while the maximum change in vertical momentum flux is
almost 30%. As expected, the variation of the turbulent flux is consistent with the
behaviour of the mean velocity profiles as required by equation (6.1).

The influence of moving surface waves is also visible in vertical profiles of the
mean turbulence variances (〈u2〉, 〈w2〉)/u2∗, shown in figures 13 and 14, respectively.
Similarly to the turbulent momentum fluxes, the results depend on c/u∗ and the
wave effect is confined to a region kz < 1. Compared to the flat case, fast moving
waves generate a larger local maximum in the u variance closer to the surface, e.g. at
c/u∗ = 22.7 the maximum 〈u2〉/u2∗ = 11 occurs at kz = 0.17 compared to 〈u2〉/u2∗ = 7.6
at kz = 0.3 for the flat case. The presence of the surface wave orbital velocity, which
varies with amplitude akc as described in equation (2.13), is partly responsible for
this effect. The wave contribution to the horizontal and vertical velocity variance at
a fixed height is especially significant for fast moving waves, as can be seen from
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table 1 and figure 14. One of the noticeable features in the u variance profile is a
pronounced deficit, compared to the flat case, near kz = 0.4 for waves moving slower
than c/u∗|tr . This is in all likelihood linked to critical layer dynamics (see § 7.6) since
for this case the critical layer is near kz = 0.4. We found that the v variance (not
shown) is nearly independent of the surface waves at least for the values of wave slope
considered. Henn & Sykes (1999), Cherukat et al. (1998), and De Angelis et al. (1997)
observed a significant increase in v fluctuations on the upwind side of a stationary
wave. This increase is probably linked to a separation-reattachment process since the
wave slopes considered in these studies (0.157 < ak < 0.628) were sufficient to induce
separation.

The vertical profile of the root-mean-square turbulent pressure 〈p2〉1/2/u2∗ is depicted
in figure 15 (note p is non-dimensional with ρU2

o ). Compared to the flat lower
boundary, the presence of a wavy lower surface generates larger pressure fluctuations
at all c/u∗. When waves are present, the pressure fluctuations are least when the
net form stress is near zero (c/u∗ ≈ c/u∗|tr) and greatest for fast moving waves. The
increased pressure fluctuations for fast moving waves are in part due to the surface
orbital velocities which are significant at c/u∗ = 22.7. The wall limiting value in the
case of a flat surface is about 2.5, which is about 60% higher than the value obtained
from the DNS by Kim et al. (1987) in a pressure-driven channel flow. As noted by
Kim et al. (1987) the wall-pressure fluctuations show a decreasing trend with Reynolds
number, and thus our result tends to support the speculation of Komminaho et al.
(1996) that the near-wall behaviour of plane turbulent Couette flow is representative
of a much higher Reynolds number channel flow.
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7.6. Phase-averaged streamlines and structure of the critical layer

One of the important aspects of this work is the eduction of flow patterns in the
vicinity of a moving wavy surface. In order to isolate the mean wave-induced flow
fields, the ensemble- and phase-averaging operators, described in § 7.1, were applied
to the u and w velocity components in surface-following coordinates. The resulting
velocity field consists of ensemble means (〈u〉, 〈w〉), which are functions of ζ, and
wave-correlated components (uw, ww), which vary with both (ξ, ζ).

The phase-averaged vectors (〈u〉+ uw, 〈w〉+ ww) are shown as streamlines in figure
16 for several different values of c/u∗ including the reference case c/u∗ = 0. For a
stationary wave, the flow pattern near the surface tends to follow the waveform quite
closely. The near-surface winds accelerate on the windward side of the wave because
of a favourable pressure gradient, then reach a maximum speed in the vicinity of the
wave crest, and finally decelerate on the leeward side of the wave under the action of
an adverse pressure gradient. At heights z > 0.5/k the wave effects are small and the
mean flow pattern tends to a horizontally uniform mean flow. For the modest wave
slope considered, ak = 0.1, the flow remains attached and there are no separation
points along the wave.

The streamline patterns over moving waves differ from their stationary counterparts
in dynamically important ways. Viewed in the wave frame of reference, the average
flow near the surface must be opposite in direction to the primary flow aloft for
non-zero c/u∗ as required by the surface boundary conditions (see § 2.5). A measure
of the vertical extent of the reversed flow region is the height of the critical layer
zcr (e.g. Belcher & Hunt 1998). The critical layer height zcr , shown as the dotted line
in figure 16, is defined as the vertical location where the total streamwise velocity is
identical to zero, i.e. where 〈u〉 + uw = 0. At low c/u∗, zcr is small, zcr < 0.1/k, and
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Figure 16. Phase-averaged streamlines over stationary and moving waves with ak = 0.1 in sur-
face-fitted coordinates: (a) c/u∗ = 0; (b) c/u∗ = 3.9; (c) c/u∗ = 7.8; (d) c/u∗ = 11.5. The dotted line
corresponds to the height of the critical layer where 〈u〉+ uw = 0.

is strongly asymmetrical about x, being thinner on the windward side of the wave
and thicker on the leeward side. At moderate c/u∗ = 7.8, zcr is higher, tends to follow
the wave shape and there is less asymmetry compared to the case with lower c/u∗.
Finally, for fast moving waves zcr > 0.5/k and is nearly flat, independent of x.

The structure and importance of the critical layer in flow over moving waves has
been the subject of much analysis. Critical layer phenomenon is the central ingredient
in Miles’ (1957) inviscid analysis and the physical interpretation of wave growth
presented by Lighthill (1962). A consequence of the critical layer is that a region
of closed streamlines or ‘cat’s-eyes’ must occur if there is any periodic variation of
the mean flow along the wave, e.g. Lighthill sketches a symmetrical cat’s-eye pattern
directly over the wave crest. However, the linearized theory of Townsend (1972) termed
the critical layer merely an unimportant part of an equilibrium layer if turbulence is
considered. Also, Mastenbroek (1996) pointed out that none of the numerical studies
of turbulent flow using second-order closure over slowly growing waves demonstrated
any dynamical effects of a critical layer. It should be noted that second-order closure
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has shown the importance of the critical layer in other flow regimes, e.g. in gravity
wave turbulence interaction (Einaudi, Finnigan & Fua 1984).

Figure 16 readily shows that a cat’s-eye pattern exists in our simulations and is
centred about the critical layer height. There are no separation or re-attachment
points at the surface (the cat’s-eye pattern does not extend to the surface) and hence
the flow over moving waves at this wave slope is attached at least for the mean flow
(e.g. Gent & Taylor 1977). However, turbulent fluctuations could potentially lead to
transient small separated zones.

At low c/u∗, the mean cat’s-eye hugs the lower boundary with its centre located just
upwind of the wave trough (x ≈ 0.4) and extends nearly over the entire wavelength.
Directly above the centre of the cat’s-eye pattern the flow is displaced vertically and
no longer follows the wavy lower boundary. In other words, the region of closed
streamlines, which encompasses relatively slow moving fluid, acts similarly to an
obstacle to the fast moving flow above zcr (i.e. the outer flow) deflecting the outer
mean streamlines away from the moving wavy surface. Thus, the critical layer is
dynamically important as it alters the mean flow patterns above the waves, disrupting
the tendency to follow the lower boundary. With increasing wave celerity, the centre
of the cat’s-eye pattern moves closer to the crest (x ≈ 0.2) and is displaced to an even
greater extent vertically. The vertical displacement is necessary to accommodate the
greater flow beneath the cat’s-eye with increasing wave speed. The overall horizontal
extent of the cat’s-eye pattern appears to be a maximum for c/u∗ = 7.8, as is the
disruption of the outer mean streamlines. At c/u∗ = 11.5, the centre of the cat’s-eye
pattern is lifted well off the surface and only slightly perturbs the near-surface pattern.
The size, shape, and streamwise and vertical locations of the mean cat’s-eye pattern,
from our DNS, are clearly dependent on c/u∗, but overall are centred between the
crest and trough and are at least as thick as the wave amplitude a in good agreement
with the measurements of Hsu et al. (1981).

7.7. Wave-correlated velocity and momentum flux fields

The effect of the critical layer on the non-dimensional wave-correlated fields (uw, ww)/u∗
and their fluxes uwww/u

2∗ is next illustrated in figures 17, 18, 19, and 20, which cor-
respond to c/u∗ = (0, 3.9, 7.8, 22.7) at fixed ak = 0.1. In each figure, we show spatial
(x, z) contours of (uw, ww, uwww) and vertical profiles of streamwise-integrated wave-
correlated fields, i.e.

[|uw|] , [|ww|], [uwww], where |uw| and |ww| are absolute values. The
contours and shading schemes are not constant across c/u∗ but instead are chosen to
highlight extrema in the fields for each case. Also, in figures 18 and 19 the critical
layer height zcr is shown for reference; zcr does not appear in figure 20 since zcr > 2/k
for this value of c/u∗, while zcr coincides with the wavy surface in figure 17 since
c = 0.

If we consider the reference case c/u∗ = 0, the positive (negative) extrema in uw
and ww both occur upwind (downwind) of the crest resulting in a positive wave-
correlated flux uwww; uw, ww and uwww all reach maximum values near z ≈ 0.125/k.
Near the surface, there are small phase shifts between uw and ww resulting in pockets
of negative flux centred just slightly downwind of the crest and trough. Furthermore
uw and ww become decorrelated with vertical distance from the boundary because of
the gradual downwind tilting of the uw-contours. At kz = 1, the centroid of the uw-
field is almost directly above the wave crest while the centroid of ww remains almost
vertically constant. The vertical profile of the spatially integrated flux [uwww] is zero
at the surface because of no-slip boundary conditions, reaches a positive maximum
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Figure 17. Normalized wave-correlated fields (uw, ww)/u∗, uwww/u2∗ for case (c/u∗, ak) = (0.0, 0.1)
in surface-following coordinates; all contours progress from darker to lighter shading with nega-
tive (positive) values for the light (dark) shaded family: (a) uw , contours (±0.6,±0.4,±0.2,±0.1),
magnitude of wave integrated uw is shown on the right; (b) ww , with contour values
(±0.1,±0.15,±0.2,±0.3); (c) flux uwww , contour values (±0.02,±0.05,±0.1,±0.2).

slightly above the surface because of the speedup and slowdown over the wave, and
then decays smoothly to zero aloft (kz > 1).

For moving waves, c/u∗ = 3.9, 7.8, 22.7 (figures 18, 19, and 20), the wave-correlated
fields exhibit significant departures from the stationary case because of the critical
layer and, to a lesser extent, the surface orbital velocities. For z < zcr , the effects
of the reverse mean flow and the orbital velocity of the water, which varies like
akc sin kx, act in concert to produce positive (negative) ww on the leeward (windward)
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Figure 18. As figure 17 but for case (c/u∗, ak) = (3.9, 0.1): (a) uw , contour values (±0.2,±0.3,
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side of the wave, a trend opposite to that in the stationary case. The importance of
the water orbital velocity can be seen in the vertical profile of [|ww|] which becomes
dominant near the surface with increasing wave celerity, e.g. ww/u∗ ∼ akc/u∗ ≈ 2.28
at (c/u∗, ak) = (22.7, 0.1). For non-zero c/u∗, the horizontal position of the positive
and negative extrema in the near-surface ww remains relatively fixed at x = ±1/4
from the crest, i.e. where the magnitude of the orbital velocity is maximum. With
increasing distance above the surface the wave-correlated ww decays, and depending
on the shape and proximity of the critical layer to the surface, passes through zero at
zcr and then changes sign.
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Figure 19. As figure 18 but for case (c/u∗, ak) = (7.8, 0.1).

Above the critical layer the (x, z) positions of the maximum and minimum ww are
correlated with the variation of the critical layer: the maximum and minimum in ww
occur upwind and downwind of the peak in zcr , like a stationary surface. However,
the vertical oscillation of the critical level is small compared to the undulations of
the water surface (i.e. the vertical variation of zcr with x is less than that of zbdy) and
hence the magnitude of ww generated by the cat’s-eye patterns above the critical level
is smaller than that below zcr at all c/u∗. For fast moving waves (c/u∗ = 22.7), the
critical level is far above the water surface zcr � 2/k, the orbital velocity of the water
is large, and then ww varies smoothly from z = zbdy up to z = 2/k.

Examination of the streamwise wave-correlated contours suggests that the variation
of uw is more complex than ww , being more tightly coupled to conditions above and
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Figure 20. As figure 17 but for case (c/u∗, ak) = (22.7, 0.1): (a) uw , contours
(±0.2,±0.3,±0.4,±0.6); (b) ww , with contour values (±0.2,±0.3,±0.5,±0.6); (c) flux uwww , con-
tour values (±0.1,±0.2,±0.3,±0.5).

below the critical height. The pattern of positive and negative uw contours near
the surface shifts to the left (upstream) with increasing c/u∗. At the same time,
the contours are displaced vertically because of the surface orbital velocities. The
magnitude of the orbital velocity for u is maximum at the wave crest and trough since
it varies as akc coskx and thus u must change sign in a very thin boundary layer near
the surface with increasing c/u∗ (see also Hsu & Hsu 1983). This leads to the kink in
the vertical profiles of [|uw|] very near the surface, z � 0.1/k.

At all c/u∗, [|uw|] exhibits a maximum near the surface nearly independent of the
vertical position of the critical level. Also, uw varies more smoothly across zcr than
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Figure 21. Profiles of the wave-correlated vertical momentum flux 〈uwww〉/u2∗ above the wavy
boundary, for several values of c/u∗.

does ww . For instance at c/u∗ = 7.8, where the effects of the critical layer are large,
the contours of uw are continuous across zcr but exhibit a pronounced downwind
tilt. The contours of uw as well as its streamwise integrated value [|uw|] hint at a
minimum near kz = 0.5, which is just above the cat’s-eye pattern (see figure 16).
Above zcr , the streamwise wave-correlated uw maintains the same sign sense as in the
stationary case, but with an exaggerated streamwise bias. This adds further support
to the speculation that the critical layer and the formation of a cat’s-eye pattern
alters the effective shape of the lower boundary that the outer flow sees, i.e. the flow
above the critical layer responds to the geometry given by zcr . Overall, our results are
in agreement with the speculation of Belcher & Hunt (1998) who suggest that for
intermediate wave speeds the reversed flow beneath the critical layer would generate
an asymmetric flow upwind of the crest while above zcr the asymmetry would be
downwind.

The wave-correlated flux uwww further reflects the importance of the critical layer.
Beneath zcr , uwww is predominantly negative (and hence so is [uwww]) and decreases
(becomes more negative) with increasing c/u∗. For intermediate c/u∗, where the
effects of the critical layer are important uwww > 0 for z > zcr similarly to flow over
stationary waves. The magnitude of uwww in the outer region is however small because
of the progressive tilting of the wave-correlated streamwise velocity. Our results for
uwww are similar to the measurements of Hsu et al. (1981) who show that the wave-
correlated flux is positive (negative) above (below) the critical layer. Kendall (1970)
and Takeuchi, Leavitt & Chao (1977) were not able to obtain measurements very
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near the surface, but in the outer region their results indicate that uwww is positive
for slow moving waves and becomes negative as c/u∗ increases similar to the present
DNS.

Finally, in figure 21 we show profiles of the normalized integrated wave-correlated
flux obtained by analysing the data in flat coordinates, [uwww]/u2∗. The important
aspect to observe here is that the trends noted previously in surface-following coordi-
nates also persist when the data are analysed in flat coordinates. Thus, we conclude
that the variation of uwww with c/u∗, and in particular the influence of the criti-
cal level, is not an artifact of the analysis procedure and might be identified with
measurements made near the water surface (e.g. Hristov et al. 1999). Also, note that
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shown in (c).

at (c/u∗, ak) = (7.32, 0.2) the wave-correlated flux in the vicinity of the waves is a
substantial contributor to the total flux, more than 40% of u2∗.

7.8. Wave-correlated pressure and surface stress fields

The effects of surface waves on the pressure field are illustrated in figures 22 and 23
for several values of c/u∗. Compared to the wave-correlated velocity field, the wave-
correlated pressure signal can extend to much higher elevations above the waves.
Also, the contours reach vertically in a smooth manner for all cases shown except
for c/u∗ = 7.8, i.e. where the critical layer has the greatest impact on the velocity
field. In the c/u∗ = 7.8 case, the pressure field contours show a pronounced tilt in the
downstream direction below zcr whereas above zcr the contours bend back upstream.
With increasing c/u∗, the region of minimum pressure first moves downstream towards
the trough but eventually retreats back upstream. At the highest c/u∗, the minimum
(maximum) pressure is nearly centred over the wave crest (trough), which results
in a small negative form stress (see figure 10). If we examine the variation of the
r.m.s. pressure in figure 15, we observe that the wave-correlated pressure component
can more than double the pressure fluctuations depending on c/u∗. The largest
r.m.s. pressure is observed for fast moving waves which is also the case with the
largest wave-correlated pressure component. Similarly the case with the smallest
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Figure 24. Normalized wave-correlated surface stress τ/u2∗ for same conditions as in figure 23.

wave-correlated pressure, c/u∗ = 16.2, has the lowest r.m.s. pressure fluctuations. It
should also be noted that the strength of the wave-correlated pressure component in
case c/u∗ = (3.9, 7.8) is noticeably smaller than either a stationary wave c/u∗ = 0 or
fast moving waves c/u∗ > 16. However, case c/u∗ = (3.9, 7.8) has higher form stress
(see figure 10) because of the optimal location of the pressure field on the wave itself,
i.e. the streamwise location of the pressure field has a higher correlation with dzbdy/dx
and thereby generates a larger positive surface drag. The surface pressure deviates
from an ideal sinusoidal waveform suggesting that nonlinearities and turbulence are
important at a modest wave slope, ak = 0.1 for all c/u∗.

The variation of the wave-correlated viscous stress parallel to the wave surface
(shown in figure 24) also depends strongly on wave age. With increasing wave age,
the maximum value of τ/u2∗ gradually shifts from near the crest to a location nearer
the trough. This movement of the stress maximum coincides with the spatial shift
in the wave-correlated velocity maximum 〈|uw|〉 (see part (a) of figures 17–20). With
increasing wave age, the absolute value of the maximum and minimum surface stress
both increase. At the same time, the effect of the imposed surface orbital velocities
is visible. For instance, at c/u∗ = 22.7 (where the orbital velocities are greatest) the
minimum surface stress is clearly negative just aft of the crest (x ∼ 1.1 in figure 24)
because of the complex near-surface flow patterns. We should note that for moving
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waves the presence of negative surface stress is not a clear indicator of flow separation
as discussed thoroughly by Gent & Taylor (1977). Close inspection of the near-surface
average streamlines (not presented) shows no hint of flow separation in this case: the
average streamlines smoothly follow the wave surface. The appearance of the negative
surface stress near the crest is a consequence of the sharp vertical change in the u
velocity field. As noted previously (see § 7.7), just aft of the crest the u-component of
the surface orbital velocity is positive but at the same streamwise location just slightly
above the surface the wave-induced velocity perturbation is negative. As a result the
u velocity profile, in a coordinate system moving with the wave phase speed, has an
elevated local minimum which results in a negative surface stress.

8. Conclusions
A numerical scheme that utilizes co-located differencing and a conformal trans-

formation can be successfully applied to the direct numerical simulation (DNS) of
turbulent flow over idealized moving sinusoidal waves. The use of cell-centred Carte-
sian velocity components as fundamental unknowns coupled with contravariant flux
velocity components at the cell faces simplifies the advective operators and makes
the co-located scheme attractive for flows with complex geometries. Our numerical
results reproduce analytic solutions for two-dimensional laminar flow over a station-
ary small-wave-slope sinusoidal waveform. Computations of plane turbulent Couette
flow with flat boundaries are in good agreement with existing laboratory results and
other numerical simulations.

Simulations of turbulent flow over two-dimensional moving water waves were
carried out at a wall Reynolds number Re∗ = 130. In the present idealization, the
wave shape and associated orbital velocities are imposed, i.e. the waves do not evolve
under the action of the wind. The results show that the waves significantly influence
the mean flow, vertical momentum fluxes, velocity variances, pressure, and form stress
(drag) depending on wave age c/u∗ (ratio of wave speed to wall friction velocity) and
wave slope ak. At low values of c/u∗ < 14 moving waves increase the form stress (or
drag) compared to a stationary wave, while at c/u∗ > 14 the form stress changes sign
and acts to drive the wind.

The mean vertical velocity profiles in the presence of waves obey the log-linear
form u/u∗ = 1/κ ln z/zo but the von Kármán constant κ and roughness length zo
depend on c/u∗ and ak. zo is maximum for c/u∗ = 7.8 while for fast moving waves the
roughness length is only slightly larger than for a smooth flat boundary. Consistent
with the increased surface roughness, the mean velocity profiles display shorter buffer
and longer logarithmic regions at small c/u∗. The variation of zo with wave age is
a consequence of the sign change of the surface form stress since the surface drift
velocity is identically zero. Also, we found that waves tend to reduce κ by slightly
more than 10%. Turbulence statistics show that the wave-correlated effects depend on
wave age and wave slope but are primarily confined to a region kz < 1 (where k is the
wavenumber of the surface undulation and z is the vertical coordinate); the turbulent
momentum flux is altered by as much as 40% depending on the combination of ak
and c/u∗.

In general the mean flow tends to follow the undulating moving wavy surface.
A region of closed streamlines (or cat’s-eye pattern) centred about the critical layer
height was found to be dynamically important at low to moderate values of c/u∗. At
small c/u∗, the centre of the cat’s-eye first forms slightly upwind of the trough and
close to the undulating surface. With increasing c/u∗, the cat’s-eye pattern thickens
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and moves upstream of the wave trough. At c/u∗ = 11.5, the centre of the cat’s-
eye forms well above the surface and only slightly influences the flow patterns. The
presence of slow moving fluid in the cat’s-eye causes the mean streamlines to be
deflected away from the moving wavy surface.

Contours of wave-correlated velocity and flux fields also are strongly dependent on
the variation of the critical layer height zcr and to a lesser extent the surface orbital
velocities. Above the critical layer the positions of the maximum and minimum
wave-correlated vertical velocity ww depend on the shape of the critical layer: the
maximum and minimum in ww occur upwind and downwind of the peak in zcr ,
like a stationary surface. The variation of the horizontal wave-correlated field uw
is more tightly coupled to conditions above and below the critical layer height. The
wave-correlated flux uwww is positive (negative) above (below) the critical layer height.

We thank Dimitris Papavassiliou and Thomas Hanratty who kindly supplied us
with some of their DNS results. John Finnigan, Jonathan Harris, Edward Patton,
Robert Street, Peter Taylor and the anonymous reviewers provided useful comments
on an earlier version of this paper. A part of this study was sponsored by the Office
of Naval Research and by the National Science Foundation through the National
Center for Atmospheric Research.
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